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Abstract: Research on the correlation between metal levels in blood and Covid-19 infection
has been conducted primarily by assessing how each individual blood metal is linked to different
aspects of the disease using samples from donors with various levels of severity to Covid-19
infection. Using logistics regression on LIBS spectra of plasma samples collected pre- and post-
Covid-19 pandemic from donors known to have developed various levels of antibodies to the
SARS-Cov-2 virus, we show that relying on the levels of Na, K, and Mg together is more efficient
at differentiating the two types of plasma samples than any single blood alone.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

In December 2019, the world experienced a sudden outbreak of a pandemic caused by the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This pandemic lead to the death of
over six million people worldwide [1], and a significant loss in the world-wide gross domestic
product [2]. Based on thousands of studies published since the pandemic started [3], we have
a greater understanding of disease progression, and more effective means to improve patient’s
lives. Several blood metals were considered. For example, Sklany et al. reported that, compared
to controls, the severity of Covid-19 was associated with a decrease in the serum levels of Ca, Fe,
Se, and Zn, whereas serum Cu and especially Cu/Zn ratio were elevated [4].

Reports on the relationship between blood metals and the health status of Covid-19 patients
are mostly focused on the severity of the disease. Noori et al. have observed in Covid-19 both
lower and higher deviations of K levels from the normal range [5]. Similarly, Yasari et al. have
noted that in terms of the role of K on the severity of Covid-19, their study was not conclusive
and suggested that further studies be conducted [6]. By evaluating the electrolyte imbalances of
286 Covid-19 patients, Taci Hoca and Berktas reported that hypocalcemia (lower levels of Ca
than normal) and hyponatremia (lower levels of Na than normal) effectively predicted disease
progression to severity [7]. Taking a broader view, Song et al. conducted a comprehensive
analysis of 28 independent observational studies that consisted of a total of 26,897 Covid-19
patients [8]. Part of this study focused on looking at the connection of electrolytes imbalances
and clinical outcome and showed that hyponatremia, hypernatremia (higher levels of Na than
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normal), as well as hypocalcemia to be associated with significant enhancement of severity of
the disease. Studies have also suggested an increased Covid-19 severity for patients with some
imbalances in serum electrolytes and glucose levels. Lippi et al. reported that Covid-19 severity
is associated with lower serum concentrations of Na, K, and Ca [9]. Micke et al. suggested
that Mg deficiency could be one of the risk factors for severe Covid-19 as it may decrease the
resistance against infection with the coronavirus 2 [10]. Trapani et al. tried to explore if Covid-19
infection lowers Mg levels [11], while Iotti et al. investigated the role of Mg during the viral
infection [12]. Other chemical elements, such as Cu and Se, and Zn have also been considered
either as potential agents against Covid-19 or as part of an adjunct therapy treatment for severe
Covid-19 patients [13–17]. For example, Sarvazad et al. investigated Mg, K, Na, and glucose
concentration in sera of 134 patients with various degrees of severity of Covid-19 [17]. Chen
et al. reported the prevalence of hypokalemia (low levels of K) among patients with Covid-19
[18]. Recently, two research groups have also focused on the relationship between the severity
of Covid-19 and the levels of trace elements in sera [19–20]. Our research group reported on
an investigation based on using Laser-induced breakdown spectroscopy (LIBS) and Inductively
Coupled Plasma- Mass Spectroscopy (ICP-MS) of blood plasma samples of donors who tested
positive for SARS-CoV-2 and healthy controls [21]. This study corroborated the importance
of individual bio metals in distinguishing samples as noted by previous research groups [9,17].
However, it did not investigate the impact of the combined effect of multiple blood metals on the
differentiation of plasma samples from Covid-19 free donors collected pre-pandemic and those
donors infected with SARS-CoV-2.

Studies on changes in metals in blood among Covid-19 positive donors have been performed by
looking at the effect of individual bio-metal on aspects of the disease, mostly on its severity. To
the best of our knowledge, no study has been conducted on the levels of blood metals in Covid-19
patients by considering combinations of multiple blood metals measured simultaneously in
plasmas collected pre- and post- pandemic. Yet, one of the hallmarks of the effects of multiple
metals present in blood is their complex role in a myriad of biomedical mechanisms. Their
interdependent interactions complicate our understanding of the biochemical processes. To
obtain more clarity, the focus should not lie solely on the role of individual metals but on the
impact of their associations and relations on the disease. Due to their ability to reveal information
“hidden” in large sets of data of biomedical samples and most notably to compare samples of
diseased patients to controls, machine learning algorithms have evolved to become useful tools
[22–28].

In this study, we used LIBS to search for potential associations between levels of blood metals
in plasma samples collected before December 2019, in other words pre-pandemic (used as
healthy controls) and post-Covid pandemic (known to have been infected with SARS-CoV-2)
irrespective of the severity of the Covid-19 disease. Using LIBS spectra of the two types of
plasma samples, we have identified Na, K, Mg, and Ca as the blood metals that have the potential
to differentiate the plasma samples from healthy controls and those known to have been infected
with the SARS-CoV-2 virus. The Covid-19 status of the donors was checked by RT-PCR and
confirmed by measuring the IgG values for all the samples using the LumiraDx SARS-CoV-2
antigen microfluidic immunofluorescence assay [29]. We have measured the LIBS spectra of the
two groups of plasma samples and analyzed them using logistic regression analysis. In this study,
we opted for LIBS because it allows to acquire, rapidly and simultaneously, the multi-elemental
composition of the plasma samples without the necessity for their preparation.

2. Methods

2.1. Sample preparation

We have acquired LIBS spectra of the plasma samples of 150 donors. These consist of 46 pre-
Covid-19 pandemic samples (we refer to these as negative samples), used as healthy controls,
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64 post- SARS-CoV-2 pandemic samples confirmed by reverse transcription-polymerase chain
reaction (RT-PCR) to have been infected by the SARS-CoV-2 (we refer to these as positive
samples). The remaining 40 samples, whose Covid-19 status was unknown to the researchers
performing the spectroscopic studies, were referred to as blind samples.

We used the same protocol for sample collection, processing, storage, and spectroscopic
measurements for all three classes of blood samples: negative as healthy controls, positive known
to have contracted the SARS-CoV-2 virus and the blind samples. The blood samples of the three
classes of donors were collected, processed, and stored using the same procedure. The blood
samples were collected under the National Expanded Access protocol sponsored by the Mayo
Clinic. Sample collection was also approved by the MRN Diagnostics Institutional Review Board.
Informed consent was obtained from all subjects and studies were performed in accordance
with FDA guidelines and regulations including IRB approval. Blood was drawn from donors by
venipuncture in a heparinized tube. The candidates for this study were recruited in the Boston or
Florida area by self-referral or by their own interest in knowing their Covid status. Enrollment
criteria included men and women, aged 18-81, and a mix of blood types. The description of the
characteristics of the donors is provided in Supplement 1 (S1).

Plasma was separated by centrifugation within 30 min of blood collection and stored for up to 4
weeks at ≤ -10°C followed by long term storage at ≤ -70°C. The samples were collected in sodium
citrate anticoagulant from donors drawn by MRN Diagnostics both before (pre 11/2019) and
after the appearance of SARS-CoV-2 in the United States. All samples were previously thawed
once on ice for making aliquots. The Si wafer (100 mm in diameter, type N, and 500 µm thick,
University Wafer) used as a substrate had small intrusions to retain the liquid plasma samples.
The Si wafer was rinsed three times with isopropanol. 2 µl of each sample was pipetted, gently
shook for few seconds, and deposited onto the Si substrate, and dried with a lamp. To reduce the
possibility of systematic errors and bias, the three classes of samples were randomly placed on
the substrate and then dried using an infrared lamp light for 10 minutes. In addition to PCR, we
checked whether our samples were negative or positive using a LumiraDx SARS Cov-2 antigen
microfluidic immunofluorescence assay with a quantitation card provided by LumiraDx to follow
antibody levels against each of their antigens in the test strip. It is important to mention that the
LIBS investigators were unare of the RT-PCR results of the blind samples prior to completing
the LIBS analysis. Subsequently, we further verified the Covid-19 status of each patient by
employing the LumiraDx SARS-CoV-2 antigen microfluidic immunofluorescence assay.

2.2. Experimental method

LIBS is an analytical method that provides emission spectral lines characteristics of a sample
[30–32]. It is based on the use of a laser intense enough to create a plasma on the surface
of a sample to be investigated. As the plasma cools down it emits radiation characteristics of
the sample which can be analyzed to obtain the composition of the sample. LIBS has been
used in numerous including biomedical applications and provides numerous advantages such as
the ability to yield rapidly multi-elemental qualitative and quantitative information with no or
minimal sample preparation [33–35]. An additional advantage of using LIBS for the present
study is its minimal sample volume which can be performed by drying a blood plasma droplet
on a silicon substrate. Other researchers have conducted LIBS measurements in liquids using
metallic substrate [36].

To obtain the LIBS spectra of the blood plasma samples, a Q-switched Nd-YAG laser
(Continuum, Surelite II), operating at 1064 nm, a repetition rate of 0.5 Hz, a laser energy of
130± 2 mJ, and pulse duration of 7 ns was focused to a spot of about 200 µm onto the blood
plasma samples by means of an air-spaced doublet lens with focal length of 30 mm. The laser
beam was perpendicularly aligned to the target surface within a chamber (SciTrace, AtomTrace)
kept at atmospheric pressure. Plasma emission was collected using an Echelle spectrometer
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(Andor Technology, ME 5000) with a spectral range from 200 nm to 900 nm, coupled to a
thermoelectrically cooled iStar Intensified Charge Coupled Device (ICCD) camera (Andor
Technology, DH734-18F-03) through a 50 µm core-diameter optical fiber, at an angle of 45° with
respect to the normal of the sample surface. To thermally stabilize the Echelle spectrometer, we
placed the instrument in a thermally controlled Styrofoam chamber with a PID-controlled heater
and an exhaust system. This enclosure effectively maintained the temperature of the Echelle
constant to better than ±1 °F. We performed wavelength calibrations spanning the wavelength
range 200–800 nm, emitted by an Hg-Ar pen lamp and directed into the same collection fiber
used for LIBS data collection.

The spectra were collected at a delay time of 1500 ns and a gate width of 3000 ns which
minimized self-absorption and saturation effects of the intensities of the emission lines. Collection
of the LIBS spectra was performed with the negative, positive, and blind samples randomly
placed on the Si substrate. For each sample, the collected spectra are the average of 15 shots at 4
different target positions, i.e., the average of 60 accumulated spectra. This reduces statistical
fluctuations and compensates for any inhomogeneities in the liquid distribution on the substrate.
Finally, we note that we have checked for any sign of saturation of the main emission lines (Na, K
and Ca, Mg) and found none. In our LIBS spectra, the emission lines of these blood metals were
clearly identified above the background and not saturating. Therefore, we are confident that the
intensities of the various emission lines analyzed are proportional to the concentrations of the
blood metals that produce them.

2.3. Data processing

The LIBS spectra acquired needs to be processed to reduce the contributions from noise caused by
various experimental effects that affect LIBS reproducibility such as laser energy fluctuations, and
inhomogeneities in the samples [37–39]. One such contribution can arise from the background
continuum that may not be uniform in intensity across the spectral window of interest. Therefore,
continuum background must be determined dynamically from spectra to spectra and from sample
to sample. However, in our study, under the specified gating conditions, just as is the case in the
LIBS spectra of biological samples, the background continuum energy of the plasma samples is
significantly lower compared to that of the remaining spectra [36]. For the purpose of this study,
it can be safely disregarded.

Visual inspection of the 60 spectra collected from each plasma sample revealed that the first
spectra of every set of 15-shots per sample have low intensities, most likely due to surface
contamination of the samples. These shots were eliminated from further analysis. The total sum
of the measured intensities of the remaining 56 remaining spectra were subjected to a Z-score
equal to 1.0 analysis. We selected a Z-score of 1 to tighten the range of intensities for the spectra
measured for each patient. Spectra that had Z-scores higher than 1 were eliminated from further
analysis. Using this procedure, we were left with between 30 and 51 spectra for each patient.
These were used to calculate a mean spectrum for each patient. We then normalized each mean
spectrum obtained by dividing its intensity by the total sum of the measured spectral intensities.
This approach provided a normalized mean spectrum for each patient.

Next, we calculated the integral elemental spectral line intensities by selecting wavelength
ranges that include the emission lines of interest while avoiding interference from adjacent
spectral lines. Due to minor variations in line widths of the emission lines, the selected ranges
also varied. Although the background continuum measured was low, we observed the presence of
an underlying pedestal within the selected wavelength regions. To approximate this pedestal, we
employed a trapezoid model using four points of the spectrum: the two limits of the wavelength
ranges, the zero line of the spectral intensity and the specific spectral line. Using Simpson’s rule,
we determined the total line area under the curve contained between the limits of the wavelength
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ranges and then subtracted the trapezoidal area of the underlying pedestal. This process yielded a
normalized area under the curve (AUC) of the emission lines free of any visible background.

To facilitate comparison of the LIBS spectra of the samples collected, we introduce the notion
of a “standard” covid-19 free donor. Utilizing plasma samples collected pre-Covid 19 pandemic,
we calculated the mean value of each AUC for each of these samples. This mean value was then
used to define the standard healthy patient. Subsequently, we compared to the AUC from all
patients, including negative, positive, and blind to the AUC of the standard patient. This was
performed by dividing the AUC of each patient by that of the mean of the standard covid-19 free
donor. This implies that since the AUC of the LIBS spectra obtained pre-Covid-19 pandemic
scatter around their mean values, the ratio of their AUC to that of the standard covid-19 free
donor scatters around 1.

The experimental method and data processing procedure used in this study reduces the impact
of laser energy fluctuations and of sample inhomogeneities but does not completely eliminate
them. However, it provides a way to estimate the uncertainties associated with the intensities of
the various emission lines which are represented by the error bars shown in Figs. 2, 3, and 4.

3. Results

3.1. Spectroscopic results of the negative and positive samples

In Fig. 1, we show an example of the mean normalized laser-induced spectrum of a donor known
to have contracted Covid-19. Using a peak-finding algorithm and the NIST Atomic Spectra
Database [40], we identified the most prominent atomic or ionic species i.e., with a relatively
strong signal to noise ratio, responsible for the emitted spectral lines namely Si, Na, K, Ca, and
Mg. We focused our current investigation on the emission lines of Na, K, Ca, and Mg, whereas
Si emission lines were treated as contributors to the background from the Si wafer substrate used.
Few spectra exhibited weak intensities associated with emission lines of Cu while emission lines
of Fe were not considered in the present analysis due to coincidental emission at wavelength of
elements.

Fig. 1. The mean, normalized LIBS spectrum of a positive patient “Positive114”; out of
initial 60 spectra measured, 41 remained after outlier removal.

To search for a pattern that can be used to distinguish between the negative and positive
samples, we used a two-step approach. First, we compared AUCs of specific emission lines of
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various blood metals measured for each donor. This step led to the identification of spectral
features of the blood metals that may provide statistically significant differentiation between the
negative and positive samples. Second, we systematically examined potential combinations of Na,
K, Ca, and Mg using the logistic regression algorithm [41]. A summary for all 11 AUCs of the
most prominent emission lines of K, Na, Mg and Ca is displayed in Fig. 2(a). To capture, a more
representative behavior of the emission lines, we calculated the consolidated mean intensities
with respect to healthy donors of the emission lines of Ca, K, Mg, and Na, for the negative and
positive samples. This was obtained by adding the 4-, 2-, 3-, and 2- line areas displayed in
Fig. 2(a) (for Ca, K, Mg, and Na respectively). Figure 2(b) displays the result of this process. We
note that there is a statistically meaningful difference in the distributions of the emission lines of
Ca, K and Mg, but it is not as pronounced for Na.

Fig. 2. a (top): Normalized Intensity with respect to negative samples (healthy controls) of
the emission lines of Ca, K, Mg, and Na measured for each donor group: healthy controls
(green) and patients infected with the corona virus (red). Figure 2(b) (bottom): Mean
intensities with respect to healthy donors of the emission lines of Ca, K, Mg, and Na,
measured for the negative samples (green) and for the positive samples (red).

Next, we attempted to distinguish between negative and positive samples using combinations
of ratios and products of the intensities with respect to negative samples of the spectral emission
lines of K, Na, Mg and Ca. As the number of possible combinations of these four elements is
large, we have selected few that include K because it shows the largest separation between the
negative and positive samples. The results of this analysis are shown in Fig. 3. We note that the
results of a more rigorous approach that consider all possible combinations by taking advantage
of tools from combinatorial mathematics are presented in Section 3.2.
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Fig. 3. Ratios of the normalized intensities of emission lines: K/Na, (K/Na) times Mg and
(K/Na) times Mg times Ca of intensities with respect to negative samples (healthy controls).
First, the value of each combination was calculated for every patient. Then, the mean and the
standard deviation of these combination values were calculated for the negative and positive
donor groups. The error bars represent one standard deviation from the mean.

To differentiate between the negative and positive plasma samples, we have calculated the
intensity of the ratio of the emission lines of K and Na for each patient, including the samples
that were blind to us. To do this, we have used the 766.5 nm and 769.9 nm emission lines of K
and the 330.3 nm and 589.3 nm emission lines of Na, to determine the intensities of the area
under the curves of the K/Na spectral emission for each patient. This is shown in Fig. 4. We note
that we could have selected Mg as one additional element to include in the differentiation of the
negative and positive samples but for simplicity we opted not to at this stage.

Fig. 4. Left panel: Intensity ratios K/Na with respect to negative samples (healthy controls)
of the K and Na emission lines measured for each donor group: negative (green dots),
positive (red dots), and blind samples (blue dots). The broken lines identify the positions
of the mean value for each group. The error bar on the K/Na value for each patient is of
the order of the one standard deviation of the mean shown in the right panel. Right panel:
Mean of the data shown on the left panel of the negative (green), positive (red), and blind
(blue dots) and the one standard deviation from the mean.
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3.2. Logistic regression analysis of spectroscopic data of negative and positive sam-
ples

Based on the intensities of the spectral features shown in Figs. 1 and 2, the emission lines of Na,
K, Mg, and Ca were selected to build the discrimination model. Further, to identify which of
these 4 blood metals contribute the most to the differentiation of the spectra of plasma samples of
healthy donors and positive, we use the logistic regression algorithm for training binary classifiers
[42,43]. In this case, we consider a training data set comprising 30 healthy donors or negative
samples and 30 diseased patients or positive samples. The feature space for each sample contains
information about Na, K, Mg, and Ca. The logistic regression algorithm provides a probability
score for each input by forming a weighted combination of the input features and applying the
logistic or sigmoid function. Therefore, the main step during the training process is finding the
unknown weights, which can be done by minimizing the cross-entropy loss function [44]. After
finding these weights in the training stage, we can use logistic regression for predicting classes of
new samples, i.e., positive vs. negative. Prior to using the algorithm, it is important to evaluate
the resilience of the model established in the training phase. This step is necessary to assess
the predictive efficacy of the model using evaluation metrics that can provide a quantitative
assessment of the performance of the model. To do this we used metrics typically used for the
evaluation of machine learning models [45,46]:

Sensitivity =
TP

TP + FN
× 100 (1)

Specificity =
TN

TN + FP
× 100 (2)

Total accuracy =
TP + TN

TP + TN + FP + FN
× 100 (3)

where TP= true positive (samples correctly classified as positive (Covid-19), FN= false negative
(positive samples wrongly classified as negative (health controls), TN= true negative (samples
correctly classified as negative), FP= false positive (negative samples wrongly classified as
positive.)

Due to the small sample size, we evaluated the classification performance on the training
data set using the leave-one-out cross-validation (LOOCV) [47,48]. To explain this process, the
logistic regression algorithm is trained on all but one sample and then tested on the hold-out
sample. Hence, this process should be repeated 60 times because there are 60 training samples:
each time with 59 training samples and a single validation data point. To further assess the
performance of the trained classifier, we also created a separate test or blind set. This set
comprised the remaining 16 negative and 34 positive samples, resulting in a total of 50 samples.
The purpose of this test/blind set is to measure how well the classifier performs on unseen data,
which is known as data splitting in statistical and machine learning. In Fig. 5, we present two
confusion matrices to discuss the performance of the logistic regression algorithm using the
training and testing data sets. Each row of the confusion matrix corresponds to a true class while
each column represents a predicted class. Based on the left panel in Fig. 5, the logistic regression
algorithm achieves a classification accuracy of 88.33%, sensitivity of 90.00%, and specificity
of 86.66%. On the other hand, using the testing/blind data set on the right panel of Fig. 5, the
same process results in a classification accuracy of 82.00%, sensitivity of 79.41%, and specificity
of 87.50%. Hence, compared to the training data set, the specificity of the logistic regression
algorithm remains mostly the same, whereas the sensitivity drops by almost 10%. This reduction
is the result of the increase in the number of false negatives from 3 to 7, which is small when
compared to the total number of positive samples in both training and testing data sets.

To account for the potential impact of data splitting on our results, we conducted a more
comprehensive analysis by performing ten independent trials. In each trial, we randomly split the
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Fig. 5. Left panel: Confusion matrix for the entire set of 30 negative and 30 positive
samples or the training data set (obtained using leave-one-out cross-validation). Right panel:
Confusion matrix for testing/blind data set comprising 16 negative and 34 positive samples
(obtained using data splitting).

available data into training and testing sets, ensuring a diverse range of data configurations. For
each trial, we calculated the evaluation metrics and observed the range of values obtained across
all trials. Specifically, the classification accuracy varied from 82% to 94%, demonstrating the
performance range of our model. Additionally, the sensitivity ranged from 79.41% to 94.11%,
indicating the variation in correctly identifying positive instances. Similarly, the specificity

Fig. 6. Accuracy, sensitivity, and specificity for varying subsets of the chemical set (Na,
K, Mg, Ca). Each row corresponds to one metric and each column corresponds to the
specific number of blood metals considered in the evaluation of the performance metrics
of the training model: one, two and three blood metals. The horizontal line in each figure
represents the corresponding performance metrics obtained by using Na, K, Mg, and Ca.
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showed a range of values between 81.25% and 93.75%. Therefore, our analysis reveals that the
logistic regression algorithm performs reasonably well in terms of identifying positive samples,
which is necessary for our next analysis to examine the interrelationship between blood metals
and their influence on the classification performance.

To this end, we consider all possible combinations of the blood metal signals measured (Na,
K, Mg, Ca) using tools from combinatorial mathematics. We start by finding all possible ways
to form subsets of varying sizes, from one blood metal to the total number of elements in the
chemical set. We then train the logistic regression algorithm using each subset and assess its
performance by reporting various metrics, such as sensitivity and specificity, using leave-one-out
cross-validation on the training data set. In addition, we sort these measures in descending order
to find the optimal size and combination of the blood metals. Based on the first column of
Fig. 6, we see that using a single blood metal is not sufficient for reaching the performance of the
baseline classifier trained using the emission lines of Na, K, Mg, and Ca. Moreover, using Na,
K, Mg as the feature set for training the logistic regression algorithm results in higher accuracy
and specificity levels compared to using the emission lines of Na, K, Mg, and Ca. This suggests
that the levels Na, K, Mg are again shown to be the main differentiator between the negative and
positive samples.

4. Discussion

Alterations of levels of bio metals in blood have been reported by several research groups. However,
the association of individual bio metal on how the disease manifest itself are inconsistent. Both
higher and lower levels of Na, K, Ca, and Mg in blood of Covid-19 patients have been reported
[5–9]. This observation suggests the need for a multi bio metal study. Investigating association
of each blood metal with Covid-19 separately from others may not be sufficiently effective to
differentiate healthy donors from Covid-19 patients. In doing so, this study reveals several
findings.

First, among healthy donors, the intensity of all the emission lines considered were less
scattered than those of the donors infected with the SARS-Cov-2 virus and the mean of the K, Na,
Mg and Ca emission lines of the positive samples was higher than those measured of the negative
controls (Fig. 2). The largest difference between the emission lines of the plasma samples of
negative controls and the positive samples was from K, followed by Mg, Ca, and Na. We then
evaluated the ratio of the normalized intensities of the emission lines of K/Na, (K/Na) x Mg and
(K/Na) x (Mg x Ca). As shown in Fig. 3, the ratios K/Na and (K/Na) x Mg provide statistically
significant differentiations between the negative and positive samples that are larger than if K or
Na are considered separately. Other studies have shown that this ratio plays a significant role in
several diseases (e.g., high blood pressure, heart disease) [49,50]. These results highlight the
potential of using a multi-elemental analysis approach instead of a single bio-metal approach. In
this way, combinations of blood metals might not be lost by individual variability, allowing the
emergence of distinct processes.

Second, as can be observed from Fig. 4, we found that the LIBS signatures of the negative
samples to be more stable than those of the positive samples. Despite the scattering of values
around the mean of the negative and positive donors, there is a statistically significant difference in
the areas of the intensities of the K/Na emission lines of the negative and positive samples. Next,
we sought to use K/Na intensity ratios to determine if each blind plasma sample was negative
or positive. This revealed that about 80% of the blind samples were positive. We have tested
this result by subsequently measuring the SARS-CoV-2 antibody levels of the all the samples
using the LumiraDx SARS-CoV-2 antigen microfluidic immunofluorescence assay targets total
antibodies test. We found that the LIBS and the antigen microfluidic immunofluorescence assay
show that more than 85% of the blind samples were positive. The results of this part of this study
will be the subject of a forthcoming manuscript that will focus on the relationship between the
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blood metals and the SARS-CoV-2 antigen measured using the SARS-CoV-2 antigen microfluidic
immunofluorescence assay.

We note that this is not a longitudinal study based on each patient, but one performed on a
group of donors with different levels of severity to Covid-19. The blood donations occurred in an
area where there were several Covid-19 variants in circulation during the donor blood collections
[51]. Previously, we investigated the antibody decay rates among the same convalescent Covid-19
patients who were part of the same Mayo Clinic EAP Trial and estimated the length of time
they maintained SARS-CoV-2 specific antibodies over the course of 7 months, with a gradual
decrease of the IgG levels among the donors [52]. Dan et al. reported that the levels of antibody
from Covid-19 infected patients were present within 2 weeks of clearance of symptoms, and
that the immunological memory to SARS-CoV-2 could last 8 months [53]. This study also
reports on a change lingering post infection but in a process linked to the K/Na ratio. Potassium
and Na have been implicated in studies that showed that patients infected with SARS-CoV2
had an electrolyte imbalance [18]. This ratio, controlled by the Na, K-ATPase, is found to be
likely disturbed in donors who contracted Covid in line with recent findings that show that both
influenza and SARS-CoV-2 negatively impact the Na, K-ATPase in the lungs [54]. Furthermore,
a recent study reports on the significance of maintaining a balanced level of Mg and suggests that
Mg homeostasis in Covid-19 and that serum Mg levels might play a role in the pathogenesis of
Covid-19 [12]. Our findings suggest that although LIBS does not measure antibody levels, it
provides information on an unidentified chemical change in the blood of infected patients that
lingers after the infectious stage is passed.

Third, the results of the logistic regression analysis using spectral features of K, Na, Ca, and
Mg show that by using various combinations of data sets, we found that the classification accuracy
varied from about 82% to about 94%, demonstrating the performance range of our model.
Additionally, the sensitivity ranged from 79.41% to 94.11%, indicating the variation in correctly
identifying positive instances. Similarly, the specificity showed a range of values between 81.25%
and 93.75%. In addition, as shown in Fig. 6, the classification performance metrics are higher
when combinations of two, three or all the four blood metals are considered rather than any alone
and that (see middle column), the specificity obtained with K and Na, is higher than that obtained
with one, three or four bio-metals. We also note that Mg combined with Na, and K yields
contributes significantly to the differentiation albeit slightly less than the K, Na combination
alone. Figure 6, shows that the Mg, K combination contributes significantly to the differentiation
(accuracy of 90%) albeit slightly less than the K, Na combination (accuracy of about 94%)
and when we combine all three elements, Na, K, and Mg, the accuracy of the differentiation
diminishes to about 88%. This suggests that subtle variations in the relationship between the
concentrations of multiple bio metals are implicated in the blood plasma of individuals with
Covid-19, particularly the ratio of K to Na. These two blood metals outperform any other
combinations of Na, K, Mg, and Ca in our classification of blood samples possibly because the
normal concentrations of Na (140 mmol/L) and K (mmol/L) are much higher than those of Ca
(2 mmol/L) and Mg (0.25 mmol/L). We expect that although these four blood metals are involved
in many physiological processes, K and Na may be more essential than any other blood metal
combinations; K and Na are known to play a significant role in regulating blood pressure and
maintaining cell integrity.

5. Conclusions

This work shows that combinations of multiple blood metals, K, Na, and Mg, more than any of
these by itself, distinguishes blood plasma samples from healthy patients and those who have
contracted the corona virus. Combinations of blood metals provide higher accuracy, specificity,
and sensitivity in the classification of the spectra of the blood plasma samples than any blood
metal considered alone. To our knowledge, this is the first study conducted on the levels of blood
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metals in COVID-19 patients that considers combinations of multiple blood metals measured
simultaneously in plasmas collected pre- and post-pandemic. This study suggests the potential
presence of subtle interactions of the bio-metals on the status of Covid-19 donors. These can aid
the understanding of the underlying biochemical processes that have been altered after infection
with SARS-CoV-2 or in other diseases [17,18]. However, to identify the combinations of blood
metals that yield the highest differentiation, we have performed a logistic regression analysis.
This approach provides information on whether a specific sample originates from a healthy or a
diseased donor. No information on the severity or any other aspect of the disease can be inferred
from our study. In addition, we have shown that the ratio of the LIBS emission lines of K/Na
changes by about 2 between negative and positive samples suggesting that it may indirectly reflect
patient antibody status. There may be other factors that contribute to the differentiation between
the samples from donors with and without SARS-CoV-2. However, despite this possibility, as
this study yields high accuracy of differentiation, we suspect that it has the potential to contribute
to elucidate the role of blood metals in Covid-19 patients.

We envisage that future studies focus on the relationship between the blood metals shown
to contribute to the differentiation of healthy donors and Covid-19 patients with the level of
SARS-CoV-2 antibody in plasma. It is likely that a longitudinal study that will measure the levels
of multiple blood metals in plasma samples periodically over several months, and possibly years,
in the same patient be useful. It may establish whether the observed change in blood metals
(Fig. 4) persists as patients initially diagnosed with Covid-19 recover and become healthy. Such
a study can contribute to a better understanding of the prevalence of covid-19 over time. In
addition, future studies may incorporate our analysis of metal spectra into T-cell system and other
aspects of the immune system that likely contribute to the immunity response and protection
against the variants of Covid-19 [55]. Understanding the human immune response to infection
by various variants, vaccination and breakthrough infections after vaccination are critical to
understanding the waning protection of humoral immunity, vaccinations, vaccine booster timing,
and herd immunity. The simultaneous multi-elemental analytical information that LIBS provides
is a new perspective that opens the possibility of enhancing our readiness and preparation for
future pandemics.
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